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Abstract
The optical properties of a one-dimensional polar semiconductor in a
strong electric field are considered. This class of materials includes non-
centrosymmetric III–V inorganic quantum wires but also polar conjugated
polymers such as polymethineimine. The polar Franz–Keldysh effect is derived
via an analytic expression for the complex dielectric constant including line
broadening and linear field terms. Results for the high-field non-perturbative
regime as well as the low-field expansion are presented.

1. Introduction

The Franz–Keldysh effect [1, 2] is a classic example of a non-perturbative phenomenon
in solid-state physics. It describes the influence of a strong electric field on the optical
properties of a semiconductor. The well-known signatures of the Franz–Keldysh effect are
field-induced absorption below the band gap and an oscillatory modulation of the spectrum
above the gap. Following the pioneering calculations of Franz and Keldysh for the absorption
edge, several authors managed to derive analytical expressions covering the entire optical
spectrum. Callaway [3] and Tharmalingam [4] obtained very elegant and compact expressions
for the optical constants in terms of Airy functions. These authors considered bulk two-
band semiconductors with isotropic effective masses. Subsequently, Aspnes [5, 6] generalized
these results to cover anisotropic effective masses as well. To complete the picture, closed-
form expressions for low-dimensional structures have been derived. Hence, two-dimensional
semiconductors were considered by Aymerich and Bassani [7] and, very recently, the one-
dimensional case covering materials such as quantum wires and conjugated polymers was
treated by the present authors [8].

A major virtue of this impressive body of work lies in the successful derivation of closed-
form analytic formulae for a highly non-perturbative phenomenon. In fact, the essential
aspects of the Franz–Keldysh effect are absent in any finite-order perturbation calculation.
This is clear from the exponential and oscillatory (trigonometric) dependence on the field
strength. In addition, closed-form expressions provide simple relations for the dependence
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on, for example, material parameters, and may readily be compared with experimental results.
Their elegance and compactness are only obtained at a certain cost, however: (1) the neglect
of exciton effects and (2) the adoption of the effective mass approximation (EMA). The
electron–hole interaction responsible for the formation of excitons has a potentially large
influence on the electro-optic spectra. The absorption lines of localized exciton states are
essentially just Stark shifted in the presence of the applied field. In contrast, the oscillator
strength of continuum resonances is completely redistributed. The significance of electron–
hole interaction is determined by the exciton binding energy. Thus, the enhanced binding
energy of excitons in low-dimensional structures [9] testifies to the importance of electron–
hole interaction in these structures. Regarding the EMA, the situation is somewhat different.
Though rarely emphasized, this approximation enters at two levels. First, there is the obvious
neglect of non-parabolicity in the dispersion of transition energies throughout the Brillouin
zone. Secondly, in the absence of a periodic potential the Bloch part of the wavefunction is
missing. Hence, the �k-vector dependence of the optical transition matrix element is necessarily
approximated or even neglected altogether. The neglect of non-parabolicity is expected to be
reasonable for a direct-gap semiconductor in the vicinity of the energy gap. Similarly, the
�k-dependence of Bloch-function momentum matrix elements is expected to be weak (quadratic)
near the gap except in one special situation: that of a polar semiconductor. In this particular
case, the �k-dependence has a linear term, which in turn leads to a linear (Pockels) electro-optic
effect. Polar semiconductors are of great practical importance as electro-optic modulators
operating in the low-field regime [10]. The quadratic (Kerr) electro-optic effect of a non-polar
or centrosymmetric semiconductor is much weaker in a low or moderate field and, thus, less
suited for device applications.

The purpose of the present paper is to extend our previous work [8] on one-dimensional
non-polar semiconductors to polar ones. In the non-polar case, analytic Franz–Keldysh type
expressions for both real and imaginary parts of the optical spectrum including the presence
of line broadening were derived within the EMA and the free-carrier limit. Extension to the
exciton case was achieved by numerical diagonalization of the electron–hole pair eigenvalue
problem. In the present work we wish to expand the analytical approach as far as possible and,
hence, electron–hole interaction will be left for future work. A rigorous inclusion of linear
as well as higher odd-order field terms will be presented, however. Analytic results for the
complex dielectric function including line broadening are presented in terms of Airy functions.
The significance of the new terms is discussed in low- as well as high-field cases. Thus, the
present work is a significant improvement towards the goal of obtaining analytical results for
the Franz–Keldysh effect in real one-dimensional materials. Our results immediately apply
to the electro-optic properties of non-centrosymmetric (e.g. GaAs) quantum wires and polar
conjugated polymers such as polymethineimine [11].

2. Theoretical model

Throughout, we stay within a two-band model with a completely filled valence (v) band
and empty conduction (c) band. The starting point for the analysis is the momentum
matrix element between these bands. Neglecting the intra-atomic contribution [12], which
is appropriate for materials having strong interatomic coupling, the matrix element in a tight-
binding representation is given by

pvc(k) = m0

h̄
〈v|∂ H

∂k
|c〉 = −i

m0

h̄
Ecv(k)zvc(k), (1)

where m0 is the free electron mass and zvc(k) is the matrix element of the interatomic
position operator ẑ ≡ i ∂

∂k . The latter equality in equation (1) is easily derived from the
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Figure 1. Linear ‘super-alternating’ chain with alternating on-site energy integrals α1 and α2 and
hopping integrals β1 and β2. The linear extension of the unit cell is l.

relation ∂
∂k 〈v|H |c〉 = 0. Next, we expand the matrix element in the vicinity of the band

gap. For notational simplicity, we take the gap to lie at k = 0, but any other position
could equally well be applied. The transition energy Ecv(k) has no linear variation near
the energy gap Eg = Ecv(0). The variation of the position matrix element, however, is given
by i ∂

∂k zvc(k) = i{ ∂
∂k 〈v|}ẑ|c〉 + 〈v|ẑ2|c〉. Hence, by applying the closure theorem to the first

term it follows that pvc(k) ≈ pvc{1 + iklP }, where pvc ≡ pvc(0) is the usual zone centre value
and

lP = zvv + zcc − (z2)vc/zvc (2)

is a characteristic polarity length related to the conduction and valence band dipole moments
and the quadrupole transition matrix element. It is independent of the choice of origin. As
an example, consider the simple chain in figure 1. For such a chain with alternating on-site
energy integrals α1 and α2 and alternating hopping integrals β1 and β2, one finds [13]

lP = l(α1 − α2)β1β2

(β2
2 − β2

1 )[(β2 − β1)2 + (α1 − α2)2]1/2
, (3)

where l is the length of the unit cell. In this particular case, where pvc(k) can be calculated
exactly [13], the general relation pvc(k) ≈ pvc{1 + iklP } is readily verified from an expansion
of the full expression. This ‘super-alternating’ chain represents, in fact, the π bands in
polymethineimine, in which the two sites of the unit cell are C and N atoms respectively, and
Peierls dimerization is responsible for the bond alternation β1 �= β2. The result in equation (3)
shows that the polarity length lP is of the order of the unit cell dimension for polymethineimine.
Notice that when α1 = α2 the model describes polyacetylene (with C on both sites in the unit
cell), which is centrosymmetric. Hence, no linear term can exist and, indeed, equation (3)
vanishes in this limit. Note, also, that equation (3) has been derived under the condition that
β1 �= β2. For a non-dimerized chain with β1 = β2 it is readily shown that the momentum
matrix element is of the form pvc(k) = ak + bk3 + O[k5]. Since odd and even powers of k
are not mixed in this case, the linear electro-optic contribution vanishes as expected because a
non-dimerized chain is clearly centrosymmetric.

For a simple material such as polymethineimine the polarity length can be obtained
analytically. However, even for more complicated compounds such as GaAs or other zinc-
blende semiconductors, the polarity length is easily obtained numerically from the wavelength
dependence of the momentum matrix element. As an example, we consider a GaAs wire
grown along the [111] direction. Near the band gap the transition between light-hole and lowest
conduction band is entirely dominant and in order to describe the wavelength dependence of the
accompanying momentum matrix element we adopt the empirical pseudopotential method [14].
Hence, we calculate the matrix element between cell-periodic Bloch functions using the bulk
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Figure 2. Real and imaginary parts of the momentum matrix element along the � → L direction
for the transition between light-hole and lowest conduction band of GaAs.

band states. This simplification corresponds to applying the envelope-function approximation,
for which the Bloch part of the quantum wire wavefunction is assumed identical to the bulk
Bloch function. In figure 2, the matrix element along the � → L direction is shown in units
of 2π h̄/a, with a the lattice constant. Near � the result can once again be fitted to the form
pvc(k) ≈ pvc{1 + iklP }, but here lP ≈ 15a, which is not surprising considering the highly
polar character of zinc-blende semiconductors along the [111] direction. Thus, a substantial
electro-optic effect is expected for these materials in agreement with experiments [10].

3. Electric field effects

In the presence of an applied electric field, k is no longer a good quantum number. Rather, the
envelope function of the α band state (α = v, c) is a plane-wave superposition with weight
ϕα(k) given by the Fourier transform of an Airy function [15]. Hence, the full momentum
matrix element 〈ψv | p̂|ψc〉 is equal to

〈ψv | p̂|ψc〉 =
∫ ∞

−∞
pvc(k)ϕ∗

v (k)ϕc(k) dk

≈ pvc

∫ ∞

−∞
{1 + iklP }ϕ∗

v (k)ϕc(k) dk.

(4)

In the notation of [8], the k-integration leads to [15]

〈ψv | p̂|ψc〉 = pvc

E f

{
Ai

(
Eg − Ecv

E f

)
+ lP f 1/3Ai′

(
Eg − Ecv

E f

)}
, (5)

where Ecv is the transition energy in the presence of the field and E f = h̄2 f 2/3/(2µ) is the
field energy with f = 2 µeF/h̄2, µ being the reduced mass. To first order in the polarity
length it is now straightforward to demonstrate that the imaginary part of the unbroadened
dielectric constant (cf equation (7) of [8]) is given by

ε̃′′(ω) = C̃

(h̄ω)2 E1/2
f

{
Ai2

(
Eg − h̄ω

E f

)
+ 2lP f 1/3Ai′

(
Eg − h̄ω

E f

)
Ai

(
Eg − h̄ω

E f

)}
. (6)

For clarity, we have introduced a ‘tilde’ in order distinguish the present result from the
original expression of [8], which is valid for non-polar materials only. In the expression
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above, C̃ is a material-dependent constant equal to 23/2π h̄e2µ1/2|pvc|2/(ε0m2
0 A), where ε0

is the vacuum permittivity and A is the cross section of the semiconductor. Unfortunately,
the unbroadened result in equation (6) is only of minor physical importance since the limit
F → 0 of the spectrum displays increasingly rapid oscillations and is divergent at the band
gap. Hence, to incorporate broadening (and compute the real part of the spectrum as well) a
rather cumbersome convolution integral is required [8]. A substantial simplification is gained,
however, by applying the following mathematical trick. First, it is noticed that equation (6)
can be rewritten as

ε̃′′(ω) =
{

1 + elP F
∂

∂ Eg

}
ε′′(ω), (7)

where ε′′(ω) is the result for non-polar materials given by equation (6) with lP = 0. In order to
obtain equation (7), the relation f 1/3 E f = eF has been applied. Secondly, the convolution has
already been applied to ε′′(ω) in [8] and leads to a complex dielectric constant ε�(ω). Hence,
it follows directly that the complex dielectric constant ε̃�(ω) including linear field terms is
related to the non-polar result ε�(ω) via

ε̃�(ω) =
{

1 + elP F
∂

∂ Eg

}
ε�(ω). (8)

If, for the sake of brevity, only the resonant part is retained the final expression reads as

ε̃�(ω) ≈ 1 +
C̃

(h̄ω̃)2 E1/2
f

{
Ai Bi

(
Eg − h̄ω̃

E f

)
+ i Ai2

(
Eg − h̄ω̃

E f

)}

+
elP FC̃

(h̄ω̃)2 E3/2
f

{
(Ai Bi)′

(
Eg − h̄ω̃

E f

)
+ 2i Ai Ai′

(
Eg − h̄ω̃

E f

)}
.

(9)

This expression extends our analytic treatment of the Franz–Keldysh effect to polar
semiconductors. It is the main result of the present paper. Several shorthand notations are
introduced in the expression above: ω̃ = ω+i� is the complex frequency including broadening
and we use Ai Bi(x) ≡ Ai(x) Bi(x), (Ai Bi)′(x) ≡ Ai(x) Bi′(x) + Ai′(x) Bi(x) and finally
AiAi′(x) ≡ Ai(x) Ai′(x). If we introduce the expansion ε̃� = 1 + χ(1) + χ(2) F + χ(3)F2 + · · ·,
the different orders are readily identified as

χ(1)(ω) = C̃

2π(h̄ω̃)2(Eg − h̄ω̃)1/2
(10)

χ(2)(ω) = − C̃elP

4π(h̄ω̃)2(Eg − h̄ω̃)3/2
(11)

χ(3)(ω) = 5C̃e2

128πµω̃2(Eg − h̄ω̃)7/2
. (12)

It is easily confirmed that the resonant part of χ(3)(ω) obeys the third derivative law of
Aspnes and Rowe [16]: χ(3)(ω) ≈ e2/(24µh̄ω2)∂3[ω2χ(1)(ω)]/∂ω3. In figures 3 and 4, the
imaginary part of the electro-optic spectrum �ε(ω) ≡ ε̃�(ω; F)− ε̃�(ω; 0) is illustrated using
polymethineimine as an example. The various parameters are taken as µ = 0.1 m0, Eg = 2
and h̄� = 0.02 eV. Since lP is roughly given by the dimension of the polymethineimine unit
cell we set l p equal to 3 and 0 Å in the polar and non-polar cases respectively. The value of
the prefactor C̃ is adjusted to C̃ = 333 eV5/2 in order to have ε̃�(0) ≈ 8, which is a typical
value for conjugated polymers. The calculations in figures 3 and 4 correspond to a low-field
(E f = 0.005 eV ∼ F = 5.8 kV cm−1) and high-field (E f = 0.03 eV ∼ F = ±85 kV cm−1)

case respectively. In the low-field case, the asymptotic spectra χ(2) F and χ(2) F +χ(3) F2 given
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Figure 3. Imaginary part of the electro-optic spectrum �ε(ω) for polymethineimine in the vicinity
of the band gap Eg = 2 eV. The spectra illustrate a low-field case, in which the field energy
E f = 0.005 eV (corresponding to F = 5.8 kV cm−1) is less than the broadening h̄� = 0.02 eV.
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Figure 4. Same as figure 3, but for the high-field regime. The field energy E f = 0.03 eV
(F = 85 kV cm−1) is larger than the broadening h̄� = 0.02 eV. The characteristic Franz–Keldysh
oscillations are clearly visible in non-polar as well as polar spectra. The sign dependence in the
polar case is a result of linear and higher odd-order field terms.

by equations (11) and (12) are found to be practically indistinguishable from the exact results.
Also, the effect of the applied field is seen to be larger in the polar case, as expected. The high-
field case, on the other hand, is clearly in the non-perturbative regime. Pronounced oscillations
are visible above the band gap in both the polar and non-polar spectra. A large effect of the sign
of the field is noticed. In all three curves of figure 4,field-induced absorption is observed around
h̄ω = 1.97 eV. The transition from the perturbative to the non-perturbative regime is expected
to occur when the field energy E f becomes comparable to the broadening h̄� = 0.02 eV. Our
findings are seen to be in agreement with this general rule. The relative significance of the polar
corrections is seen to be smallest in the high-field case. This is reasonable since higher-order
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terms start to dominate. In fact, it is found that for the oscillatory part, the main difference
between polar and non-polar spectra is a shift of the former by approximately �(h̄ω) ≈ elP F .
The amplitude of the oscillations is not severely affected.

4. Conclusion

In conclusion, we have presented an analytic calculation of the optical properties of a one-
dimensional polar semiconductor in the presence of an electrostatic field. The complex
field-dependent dielectric constant including line broadening is expressed in terms of Airy
functions. The polar corrections are proportional to a polarity length related to the conduction
and valence band dipole moments. The characteristic signatures of the Franz–Keldysh effect
in non-polar materials, i.e. induced absorption below the band gap and oscillatory modulation
of the spectrum, are found in the polar case as well.
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